Faculté des sciences de base

INTRODUCTION AUX PROBABILITÉS Série 1

Rappel:

Un espace de probabilité élémentaire est un triplet $(\Omega, \mathcal{F}, \mathbb{P})$ t.q. :

- 1. Ω est un ensemble fini;
- 2. $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ est une collection d'ensembles t.q. $\Omega \in \mathcal{F}$; si $F \in \mathcal{F}$ alors $F^c \in \mathcal{F}$; et si $E, F \in \mathcal{F}$ alors $E \cup F \in \mathcal{F}$;
- 3. $\mathbb{P}: \mathcal{F} \to [0,1]$ est une fonction t.q. $\mathbb{P}(\Omega) = 1$, et si $E, F \in \mathcal{F}$ sont disjoints, alors $\mathbb{P}(E \cup F) = \mathbb{P}(E) + \mathbb{P}(F)$.

Un espace de probabilité est un triplet $(\Omega, \mathcal{F}, \mathbb{P})$ t.q.

- 1. Ω est un ensemble;
- 2. $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ est une collection d'ensembles t.q. $\Omega \in \mathcal{F}$; si $F \in \mathcal{F}$ alors $F^c \in \mathcal{F}$; et si $E_1, E_2, \dots \in \mathcal{F}$ alors $\bigcup_{i>1} E_i \in \mathcal{F}$;
- 3. $\mathbb{P}: \mathcal{F} \to [0,1]$ est une fonction t.q. $\mathbb{P}(\Omega) = 1$, et si $E_1, E_2, \dots \in \mathcal{F}$ sont disjoints, alors $\mathbb{P}(\bigcup_{i \geq 1} E_i) = \sum_{i \geq 1} \mathbb{P}(E_i)$.

Exercice 1. Décrire un espace de probabilité associé aux expériences suivantes :

- 1. lancer d'une pièce de monnaie équilibrée;
- 2. lancer d'un dé à six faces équilibré;
- 3. lancer de deux dés à six faces équilibrés distincts;
- 4. lancer de deux pièces de monnaie équilibrées indistinguables;
- 5. n lancers d'une pièce de monnaie truquée : $\mathbb{P}(\text{pile}) = p$.

Exercice 2. Construire un espace de probabilité qui corresponde à la somme de deux dés à six faces équilibrés distincts.

Exercice 3. Une marche simple de n étapes est une suite à valeurs réelles $S_0, S_1, S_2, \ldots, S_n$ telle que $S_0 = 0$ et $|S_i - S_{i-1}| = 1$ pour tout $1 \le i \le n$. Construire un espace de probabilité pour lequel chaque marche simple est équiprobable et où l'on peut observer la marche dans son intégralité. Que faudrait-il changer si l'on veut observer seulement les étapes paires?

Exercice 4. Montrer que tout espace de probabilité élémentaire est un espace de probabilité.

Exercice 5. [Quelques propriétés intuitives] Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité. Soient $A_1, A_2, \dots \in \mathcal{F}$. Alors :

- 1. Pour tout $A \in \mathcal{F}$, on a $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$.
- 2. Si $A_1 \subseteq A_2$, alors $\mathbb{P}(A_1) \leq \mathbb{P}(A_2)$.
- 3. Union bound : $\mathbb{P}(\bigcup_{n>1} A_n) \leq \sum_{n>1} \mathbb{P}(A_n)$.

Exercice 6. Soient $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et $A_1, \ldots, A_n \in \mathcal{F}$. Montrer que

$$\mathbb{P}(A_1 \cup \dots \cup A_n) = \sum_{\substack{I \subset \{1,\dots,n\}\\I \neq \emptyset}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_i\right).$$

Le cas n=2 nous donne en particulier que $\mathbb{P}(A_1 \cup A_2) = \mathbb{P}(A_1) + \mathbb{P}(A_2) - \mathbb{P}(A_1 \cap A_2)$. Indice: procéder par récurrence sur n.